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The First Structure Determination of a Possible
Intermediate in Ruthenium
2,2-Bis(diphenylphosphino)-1,1-binaphthyl
Catalyzed Hydrogenation with a Prochiral Group
Bound to Ruthenium. Stoichiometric Reaction of a
Chiral Ruthenium —Carbon Bond with Dihydrogen

solution during hydrogenation oZJ-methyl a-acetamidocin-
namate (MAC) catalyzed by a RWBINAP compound.We
recently reported the synthesis and the catalytic activity of [Ru-
((R)-BINAP)(H)(MeCN)(sol}](BF4) (1, sol= MeOH or THF)?>
CompoundL catalyzed the hydrogenation of MAC in methanol
solutions to generatd-acetylphenylalanine methyl ester (MA@H

in 86% ee R) (eq 1)° This enantioselectivity is comparable to

Gas those of other RuBINAP complexeda4e
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We found that the stoichiometric reaction between MAC and
1in acetone at room temperature resulted in rapid formation of
a predominant specieg,(>99%) in solution (eq 2).3'P NMR
spectra recorded under conditions similar to those of the catalytic
reaction (ambient temperature, 2 mol %1pfMeOH solution,
pressure KW~ 2 atm) showed th& was the predominant species
in solution during the catalytic hydrogenati®riNMR suggested
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Complexes of Ru(ll) and 2;is(diphenylphosphino)-1'4

binaphthyl (BINAP) comprise the most effective catalyst Me I+
systems developed for the enantioselective hydrogenation of ﬁ e
prochiral olefins and ketones. Nearly 200 repbdescribing meon o | <

these reactions, including several industrial syntheses, have MACHT  oomtemn QP/‘TU/\Y}/O\MG @
appeared since the first examples were disclosed in 1985 and Ojﬂ‘H (BF4)
19862 Despite the intense study of these systems, there are no e

reports of structural characterization (even using spectrostopy) 2

of a species with a prochiral olefin or ketone bound to a Ru

center. The structures of the catalytic intermediates (and that2 resulted from transfer of the hydride irto theS-olefinic
therefore the origins of enantioselection) are speculative as theycarbon of MAC and transfer of Ru to theecarbon to form a
have been inferred from indirect methedsotopic labeling, 5-membered metallacycle. Further, the signal in*i@{ H}
olefin isomerizations, and kinetic studiswe now report the NMR spectrum of2 for the a-carbon showedis- andtrans

first isolation, structural characterization, and reaction with coupling ¢ 67.3,2Jcris = 3.9 Hz,%Jcprans = 42.2 Hz) to the
dihydrogen gas of the major Ru-containing species present inphosphorus nuclei, suggesting that tkearbon was coordinated

to Ru in the plane containing the phosphine groups. e
signals for the amido and the ester carbonyl groups were also
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mail).
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major enantiomer of the catalytic hydrogenation. The stoichio-
metric reaction of2 with dihydrogen gas under conditions
similar'® to those of the catalytic hydrogenation resulted in
formation of MACH, and [Ru(R)-BINAP)(H)(18-MACH )] *

(3), in which MACH, was bonded to Ru as anp®-arene
ligand!213 MACH, was liberated fron3 by refluxing in MeCN
solution (to generate [RURJ-BINAP)(H)(MeCN)]™") (eq 3).
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Figure 1. The solid state structure df as determined by X-ray 2 Me ®F4) 83% ee (R)

diffraction. The positions of the hydrogen atoms are based on geometries . . o 14
of the parent carbon atoms. Non-hydrogen atoms are represented afl '€ €€ of the combined portions of MAGhvas 83% R).

the 20% probability level. Selected bond lengths (A) are as follows: Assuming that direct reaction @with dihydrogen gas results

Ru(1)-N(2), 2.009(9); Ru(1yP(1), 2.269(3); Ru(HP(2), 2.369(3);  in a stereospecific replacement of Ru by hydrogfethese
C(3)—C(6), 1.526(14). results imply that formation d? was to some extent reversible
under the conditions of the catalytic hydrogenafi®#
Figure 1 shows the solid state structure2cés determined Hydrogenolysis of the bond between [Ru(BINAP)] and a
by X-ray diffraction® The positions of the signals in tH&C chiral carbon center has been proposed as a key step in several

CP/MAS NMR spectrum of were nearly identical to those in ~ catalytic hydrogenations and may be the enantioselective step
the solution spectrum, implying that the solid state structure Of the present catalytic hydrogenatibnFurther investigation
was representative of the solution structure. As predicted from i required to determine 2 is an actual intermediate in the
the NMR data, MACH was bonded to the Ru center via the catalytic cycle and if the chiral interactions 2rare relevant to
a-carbon and the amido and ester groups. Similar tridentate € origins of enantioselection. We note, however, that forma-
bonding of MACH to a metal center was identified spectro- tion of compound was rapid relative to the overall rate of the

scopically at low temperatures by Browet al. for [Rh- catalytic hydrogenation, thaz was likely the predominant
(DIPAMP)(MACH)H](BFs) (DIPAMP is (RR)-1,2-bis[(- species in solution during catalysis, and that the rate of reaction
methoxyphenyl)phenylphosphino]ethafie)Ve note that the onV\_/lthl(glhydrogen gas was comparable to that of the catalytic
amido group of2 occupied a coordination siteis to both reaction.
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was comparable to the ruthenitroxygen (2.260(7)A (Ru(B JA964014+

0(2)), 2.075(7) A (Ru(1)¥0(1)) and to the rutheniurcarbon -
! (11) The dihydrogen gas pressure, temperature, and solvent were the same
(2.257 (10) A (Ru(1)-C(3)) bond lengths. as those for the catalytic reaction, but tBgfpr the stoichiometric reaction
The absolute configuration at tieecarbon wasS Stereospe- was ~3 times higher than the initiall] for the catalytic reaction.
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size 0.45x 0.25 x 0.12 mm;u(Mo Ka) = 0.359 mnTl. Data were (16) A mechanism involving reversible formation of an intermediate
measured using a Siemens SMART Platform CCD diffractometer with Mo similar to 2 was proposed to account for the isomerization Bj-Z-
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